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The genotyping of closely spaced single-nucleotide polymorphism (SNP) markers frequently yields highly correlated
data, owing to extensive linkage disequilibrium (LD) between markers. The extent of LD varies widely across the
genome and drives the number of frequent haplotypes observed in small regions. Several studies have illustrated
the possibility that LD or haplotype data could be used to select a subset of SNPs that optimize the information
retained in a genomic region while reducing the genotyping effort and simplifying the analysis. We propose a method
based on the spectral decomposition of the matrices of pairwise LD between markers, and we select markers on
the basis of their contributions to the total genetic variation. We also modify Clayton’s “haplotype tagging SNP”
selection method, which utilizes haplotype information. For both methods, we propose sliding window–based
algorithms that allow the methods to be applied to large chromosomal regions. Our procedures require genotype
information about a small number of individuals for an initial set of SNPs and selection of an optimum subset of
SNPs that could be efficiently genotyped on larger numbers of samples while retaining most of the genetic variation
in samples. We identify suitable parameter combinations for the procedures, and we show that a sample size of
50–100 individuals achieves consistent results in studies of simulated data sets in linkage equilibrium and LD. When
applied to experimental data sets, both procedures were similarly effective at reducing the genotyping requirement
while maintaining the genetic information content throughout the regions. We also show that haplotype-association
results that Hosking et al. obtained near CYP2D6 were almost identical before and after marker selection.

Introduction

Efforts to positionally clone susceptibility genes for com-
mon, oligogenic diseases have led to the development of
high-density maps of SNPs distributed across the human
genome (Sachidanandam et al. 2001). Theoretical studies
have suggested that association tests employing such high-
density SNP maps, either as a primary approach or as a
follow-up to family-based linkage studies, should be more
powerful in the detection of disease-susceptibility genes
than in traditional linkage approaches (Risch and Meri-
kangas 1996). However, the precise numerical meaning
of “high density” is a matter of debate and has significant
implications for the cost and practicality of conducting
SNP association studies. An optimum strategy would be
to genotype enough SNPs to capture the large majority
of information on genetic variation within a defined chro-
mosomal region while avoiding the typing of SNPs that
yield redundant information because of extensive linkage
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disequilibrium (LD) between nearby SNPs. Defining the
optimum set of SNPs will require knowledge of the pat-
terns of LD across the human genome.

Recently, a common pattern has emerged from sev-
eral studies that investigated the empirical distribution
of LD in a number of different human chromosomal
regions. LD appears to be organized in blocklike struc-
tures, in which a contiguous group of SNPs that con-
stitute a block show high levels of pairwise LD between
SNPs and in which there is little LD between SNPs in
different blocks. These blocklike LD structures show
considerable spatial variation across different genomic
regions, extending from a few kilobases to several hun-
dred kilobases and exhibiting differing boundaries in
samples from different ethnic groups (Daly et al. 2001;
Johnson et al. 2001; Patil et al. 2001; Subrahmanyan
et al. 2001; Dawson et al. 2002; Gabriel et al. 2002).
Reduced measures of haplotype diversity within blocks
(as compared to expectations under linkage equilibri-
um [LE] based on the number of SNPs involved) are
observed not only for numerically inferred haplotypes
derived from genotype data but also for experimental-
ly determined haplotypes (Patil et al. 2001). The reduc-
tion of haplotype diversities suggests the possibility
of identifying the minimum number of SNPs needed
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to define the common haplotypes, thereby reducing
the number of markers needed to capture the majority
of the genetic information about the region. A proce-
dure that utilizes genotype information on a small num-
ber of samples to prioritize SNPs for typing on the basis
of a large number of samples could be useful in increas-
ing the experimental efficiency in any project involving
a high-density map of SNPs; examples of such a proce-
dure include testing multiple SNPs within a candidate
gene for association, fine mapping a region identified
through linkage analysis, and testing thousands of SNPs
as part of a genomewide association study. Further-
more, identification of the most independent and infor-
mative SNPs could be helpful in interpreting analyses
across a region where a large number of highly correlat-
ed SNPs have been typed, resulting in a large amount
of redundant information; on the other hand, any mark-
er-selection procedure based on common SNPs or hap-
lotypes relies on the arguable assumption that common
SNP variation can provide high predictive values for
risks associated with complex diseases (Couzin 2002).
Thus, these procedures are only valuable to the extent
that the original set of SNPs is useful for association-
mapping purposes. Nevertheless, marker selection can
be viewed as a procedure for identifying the polymor-
phisms most characteristic of underlying populations.

Several algorithms have been proposed for the detec-
tion of haplotype blocks and/or the selection of markers.
Patil et al. (2001) utilized a greedy algorithm to partition
an entire chromosome into a set of contiguous haplotype
blocks while minimizing the total number of represen-
tative SNPs that distinguish at least a percent of the un-
ambiguous haplotypes in each block. Zhang et al. (2002)
extended the greedy algorithm of Patil et al. to a dynamic
programming algorithm, which can guarantee an optimal
solution for haplotype partitioning. These algorithms rely
on the definitions of block boundaries for the selection
of markers and require data in which haplotype phase is
known. In the data set analyzed by Patil et al. and Zhang
et al., haplotypes were determined experimentally, but
this type of information is usually not available. Other
block-defining algorithms, such as those described by
Daly et al. (2002) and Gabriel et al. (2002), do not
require haplotype-phase–known data. Daly et al. used
a combination of methods (including familial data and
the EM algorithm) to estimate haplotype frequencies,
identified lower-diversity haplotype within consecutive
five-marker windows, and applied a hidden Markov
model to formally define the blocks. Gabriel et al. used
D′, together with associated CIs, as a measure of the
historical recombination and defined blocks. However,
both of the latter methods appear to be specific to the
particular data sets used, and their general applicability
is not known. Johnson et al. (2001) proposed two meth-
ods to select markers within genes on the basis of haplo-

types constructed using either family data or the expec-
tation-maximization (EM) algorithm in unrelated indi-
viduals: one method orders the haplotypes by their sim-
ilarities and requires that SNPs be selected by eye; the
other suggests a haplotype tagging SNP (htSNP) diver-
sity method, proposed by Clayton (2001) for the selec-
tion of htSNPs, to best extract the haplotype informa-
tion in a gene. The first method is difficult to automate,
and the second can become quite computationally in-
tensive when a large number of markers are considered
in a region (for detailed reasons, see the “Discussion”
section). Both methods require the predetermination of
haplotypes for the region considered, which is difficult
when the region contains a large number of markers.

Notice that all the block-detecting methods mentioned
may result in differing block boundaries. Given the diver-
sity of methods used to define blocks and the conflicting
assertions as to whether they exist at all (Couzin 2002),
we choose to develop marker-selection procedures that
do not rely on the definition of blocks. Instead, we select
a set of SNPs that retain haplotype information similar
to an original, presumably larger set of SNPs. The proce-
dure is applicable to regions with a large number of SNPs
and to data sets without haplotype-phase information or
family information. We propose a method based on the
spectral decomposition (spD) of the matrix of the pair-
wise LD coefficients of the markers and compare it with
the htSNP diversity (div) method proposed by Clayton
(2001). In addition, we propose a procedure summariz-
ing the information obtained from a sliding window ap-
proach, to allow both methods to be applied in large
chromosomal regions. Our procedures are local, in that
they are applied to genetically proximal sets of markers
by considering relatively short windows of markers cov-
ering distances that are generally !500 kb. None of the
existing marker-selection methods have been evaluated
using quantitative criteria describing the proportion of
the information retained in the selected marker sets. We
compare two local div measures—the haplotype hetero-
zygosity and the number of frequent haplotypes before
and after application of the procedures—to assess the
information retained and to measure the success of these
procedures. We summarize the results from two simu-
lation studies to evaluate the performance of these pro-
cedures, and we apply them to two experimental data
sets as examples, as well as to markers typed around
CYP2D6, where an association has been identified, to
show the impact that marker-selection procedures have
on the results of these association studies (Hosking et al.
2002).

Methods

We describe two methods, a procedure extending them
to a large chromosomal region, two simulation studies,
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and criteria by which we evaluate the procedure’s per-
formance when applied to experimental data sets. Our
selection procedures study relatively polymorphic SNPs
with minor-allele frequency (MAF) �0.05.

spD

Population genetics theory predicts that the LD as-
sociated with alleles from three or more markers de-
cays more rapidly than that from two markers (Ben-
nett 1954). Moreover, the precision of estimates and
the power to detect LD associated with alleles from
three or more markers quickly diminishes with their
order. Therefore, it is reasonable to describe depen-
dencies between markers by pairwise correlations. In
essence, spD represents an entire variance-covariance
matrix (in the present article, the LD matrix) in terms of
its eigenvalues and eigenvectors. The spD-based meth-
od that we propose takes into account all pairwise
disequilibria for a set of markers. It assumes that the
LD associated with alleles from three or more markers
is negligible and that the practically available haplo-
type information can be recovered from pairwise LD
and single-marker characteristics. The spD method is
also the basis for the principal-component analysis
(PCA). In PCA, the sample variation is represented
by a few linear combinations (the eigenvectors) of all
original variables (i.e., SNPs), taken with different
weights (the eigenvalues) reflecting their importance.
In contrast, we examine all eigenvectors (linear com-
binations of the marker contributions) and eigenval-
ues (the importance of the corresponding combina-
tions) and retain only a subset of the original variables
that contribute more to the more important weights.
This procedure allows us to consider the pairwise LD
coefficients of all markers at once, instead of consid-
ering the LD measure for only one pair of markers at
a time. Let L be the number of markers evaluated.
For a set of markers, , the LD matrix is Rm , … ,m1 L

with the pairwise correlation as components, whererij

is the composite LD (Weir 1996) between markersD ij

i and j (see appendix A);

D̂ij
r p .ij ˆ�Var (D )ij

Applying the spD technique, R can be written as
, where and are eigenvectors and eigen-L T� l e e e li i i i iip1

values of R, , and . The var-…i p 1, … ,L l � l � l1 2 L

iables (markers) that contribute more to the eigenvectors
associated with the first several large eigenvalues are con-
sidered to be the more influential variables (markers) for
that LD matrix, R. Variables that contribute more to the
eigenvectors associated with subsequent eigenvalues are
considered to be less influential.

To determine if there are variables or markers that have
little or no influence on the LD matrix, we calculate the

index as follows (for details, see appendix B):Lr

2� li

L p L � 1 .r 2(� l )i

indicates that all the markers in the set provideL p 0r

important information and the whole set should be kept.
This measure is derived by examining the conditions of
extreme disequilibrium and complete independence. We
find it useful in determining when no SNPs should be
eliminated from the set. If , then the actual numberL 1 0r

of markers to be retained, x, is most precisely determined
from the inequality

x� l iip1
� a ,L� l iip1

where a is the proportion of information retained (pro-
portion of variation explained). Therefore, we retain
markers while the sum of the eigenvalues correspond-
ing to the eigenvectors to which they contribute more
is a high proportion of the sum of all eigenvalues. Ap-
propriate levels for a will be investigated in the “Sim-
ulation Studies” section.

It is not always clear which marker contributes more
to which eigenvalue or eigenvector. To sharpen marker
loadings to particular eigenvectors, we apply the var-
imax-rotation procedure to the original set of eigen-
vectors, . This procedure finds an or-E p {e , … ,e }1 L

thogonal transformation T, , that will confine∗E p ET
the influence of each marker to a particular eigenvector.
The varimax rotation is chosen according to the recom-
mendation of Jackson (1991). For each marker, , com-mj

pute the following:

x1 ∗F FG p e�j jvx p1v

and

L1 ∗F Fg p e ,�j jvL � x px�1v

where is the jth element of the vth column of . A∗ ∗e Ejv

marker, , is selected if —that is, if this markerm G 1 gj j j

contributes mostly to eigenvectors associated with the
main part of the variation in the data.

div

Clayton (2001) proposed a method to select a subset
of SNPs by using haplotype information. Let N be the
total number of haplotypes in the sample, which is twice
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the number of individuals for a diploid population. For
L diallelic-marker haplotypes, each haplotype can be writ-
ten as a vector , wherez p {z , j p 1, … ,L, i p 1, … ,N}i ij

is either 0 or 1, representing one of the two alleles.zij

The div measure can be defined as the total number of
differences in all pairwise comparisons between a pair2N
of haplotypes. If haplotypes i and k are the same at locus
j, then ; if they differ, then . Atz � z p 0 z � z p �1ij kj ij kj

locus j, div is calculated as

N N N N

2 2 2D p (z � z ) p 2 N z � ( z ) .�� � �[ ]j ij kj ij ij
ip1 kp1 ip1 ip1

Clayton proposed the calculation of the total div as the
summation over all loci, which is analogous to the total
sum of squares in an analysis-of-variance setting:

N N L

TD p (Z � Z ) (Z � Z ) p D , (1)�� �i k i k j
ip1 kp1 jp1

where L is the number of loci.
htSNPs are a set of SNPs that retain most of the infor-

mation available in the full haplotype. After the selection
of a set of htSNPs, N haplotypes are collapsed into groups
according to allele combinations for htSNPs. If H of L
SNPs under study are selected as candidate htSNPs, then
any haplotypes will belong to the same group as long as
they have the same alleles at these H loci. Then, the N
full haplotypes are divided into (at most) groups.HG p 2
Within each group, a similar diversity measure to that
above (eq. [1]) is computed. Within-group div is then
summed over all groups, which is analogous to the re-
sidual sums of squares:

G

TR p (Z � Z ) (Z � Z ) .� � � i k i k[ ]
gp1 i�G k�Gg g

Then, Clayton (2001) calculated the proportion of diver-
sity explained by a set of htSNPs as . Thep p 1 � (R/D)
preferred value of is as close to 0 as possible, indi-R/D
cating that there is little diversity left when the haplotype
is represented by the subset of htSNPs. The optimal htSNP
set is obtained by an exhaustive search from the possible

candidate sets. Since Clayton (2001) does not pro-L2 � 1
vide guidance on obtaining a good set of htSNPs, we
propose selecting a set of htSNPs by first minimizing the
number of SNPs selected when maintaining p greater than
a desired value, say a, and then picking a marker set pro-
vided the maximum p among them.

We have simplified the expressions for both D and R
in Clayton’s (2001) formula:

L L

2D p D p 2(Nn � n )� �j 0j 1j
jp1 jp1

L L

2p 2n n p N 2p p ,� �0j 1j 0j 1j
jp1 jp1

and

L G L G

2R p 2n n p N 2p p ,�� ��0jg 1jg 0jg 1jg
jp1 gp1 jp1 gp1

where and are the number of “0’s” and “1’s” atn n0j 1j

locus j and and are the frequencies of “0” and “1”p p0j 1j

alleles at locus j. Here, is the expected heterozy-2p p0j 1j

gosity measure for the jth locus. Correspondingly,

L G� � 2p p0jg 1jgjp1 gp1
p p 1 � 1 a . (2)L� 2p p0j 1jjp1

Therefore, htSNPs are selected by trying to minimize the
within-group locus heterozygosity. After the simplifica-
tion, the above measure (eq. [2]) can be extended to an-
alyze multiallelic markers; and are extended to ,p p p0 1 i

where and T is the total number of alleles ati p 0, … ,T
this marker. Clayton (2001) suggested a k statistic, which
corrects for the fact that selecting a set of ht SNPs will
always reduce the residual diversity. When haplotypes are
not known with certainty, the EM algorithm is used to
infer haplotype frequencies.

Applying spD or div to a Large Chromosomal Region

In the selection of markers that maintain haplotype
information, it is important to consider the haplotype
information in the context of nearby markers, rather
than that of any marker regardless of its position. That
is, we decide not to include markers not only if they
provide similar information but also if they are fairly
close to each other. Therefore, we propose the follow-
ing procedure to apply either spD or div to a chro-
mosomal region with a large number of SNPs. First,
we assume that the markers are arranged according to
the map order. Next, a sliding window with a relatively
small window size is moved along the map. Either spD
or div is used to select informative SNPs in each win-
dow. The event of selecting or failing to select a SNP
is recorded in a vector , whereWi p {w , j p 1, … ,L}ij

L is the number of SNPs in a window (or the window
size); indicates that the jth SNP is not selectedw p 1ij

in the ith window, and otherwise. Most SNPsw p 0ij

appear in multiple windows. Each marker’s relative re-
dundancy is computed by averaging its corresponding
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over all the windows in which it appears, and it iswij

recorded in another vector ,RR p {rr , m p 1, … ,M}m

where M is the total number of markers in the region
and is the relative redundancy of the mth SNP. Arrm

SNP is dropped from the final list when its relative
redundancy is above a predetermined threshold. Note
that the window size (L) and the relative-redundancy
threshold are adjustable parameters.

Ideally, the sliding window size should be changed
to reflect differing amounts of LD in the data. More
SNPs should be included in a window and examined
together when they are in regions of extensive LD, and
fewer SNPs should be examined together in regions of
more limited LD. Practically, it is difficult to identify
regions of high and low LD and choose the window
sizes accordingly. Therefore, we propose applying the
procedure multiple times with a fixed window size, us-
ing the selected set of SNPs resulting from each run as
the input set for the subsequent run. When a contiguous
group of SNPs in LD with each other exceeds the win-
dow size, some of those SNPs will likely be dropped in
the first run, bringing more of the group’s SNPs within
a window’s length of each other in each subsequent run.
We will refer to this setup as “repeated runs”; additional
runs can be repeated until the procedure converges, and
convergence is achieved when the difference between the
number of markers before and after selection represents
�5% of the markers before selection. We will refer to
the procedures based on spD and div in uppercase, as
“SPD” and “DIV,” respectively.

Simulation Studies

Two simulation studies are designed to study the perfor-
mance of SPD and DIV. The first study investigates how
the procedures behave when applied to SNPs in LE; the
second study investigates what sample sizes provide con-
sistent selection results. If we put these procedures into a
hypothesis-testing framework, then the first study is sim-
ilar to controlling the false-positive rate under the null
hypothesis, “How often do we drop important markers
that should be included in our set?” Also note that we
are interested in the true-positive rate; or, “How often do
we drop markers and maintain the desired information
when there are redundancies among them?” This will be
addressed by using the experimental data, rather than by
using a simulation approach.

Simulation Study I: Will the SNP-Selection Procedure
Drop “Important” SNPs?

When the SNPs are in LE, all SNPs should be selected
if both SPD and DIV drop only SNPs that are redundant.
The performance of both SPD and DIV will be affected
by the set of parameters used, such as the sliding window

size, the percentage of the variation explained, and the
relative-redundancy threshold for each marker. We iden-
tify suitable parameter combinations that allow us to limit
the drop rate of SNPs in LE (i.e., the false-positive rate)
to !5%. First, genotype data for 50 SNPs are simulated.
Each SNP’s population allele frequency is randomly and
independently drawn from the uniform distribution in
(0,1) and is truncated to be between 5% and 95%. Then,
after obtaining a random sample of subject genotypes on
the basis of the population allele frequencies, we apply
either the SPD method or the DIV method, record the
percentage of markers (of 50) dropped, and average this
percentage over 100 simulation runs. Note that the re-
peated-runs setup is not used here, since the purpose is
to find parameter combinations that ensure that the pro-
portion of nonredundant SNPs dropped at each single
run is !5%. Note also that this threshold is the conver-
gence criterion for repeated runs. If the drop percentage
in any one run is !5% (i.e., below the false-positive rate),
then we stop the procedure and declare convergence, to
prevent the dropping of informative SNPs. For SPD, we
investigate the parameter combinations: sliding window
sizes of 2, 5, 10, 15, and 30 and percentages of the varia-
tion explained of 85% and 90%. For DIV, we investigate
sliding window sizes of 2, 3, 5, and 7 and percentages of
the variation explained of 92% and 96%. Note that the
values for the percentages of the variation explained are
calculated using different methods for SPD and DIV, have
different interpretations, and cannot be directly related to
each other. For both SPD and DIV, we investigate relative-
redundancy thresholds of 50%, 70%, and 90% and sam-
ple sizes of 10, 50, 100, and 200 individuals. In addition,
we look at the effect of availability of haplotype-phase in-
formation by providing the same data in both haplotype-
phase–known and haplotype-phase–unknown forms.

The percentage of variation explained, as a parameter,
significantly determines the proportion of the LD informa-
tion retained. We need to set this parameter high enough
to conserve the required amount of LD to map suscep-
tibility genes successfully but low enough to achieve a
useful reduction in SNP numbers. However, the optimal
amount of information is affected by many factors, in-
cluding the effect size and phenotype model of the suscep-
tibility gene being mapped, the local LD pattern, marker-
allele frequencies, and distribution of markers. Therefore,
an optimal value for the percentage of variation explained
for all cases will not exist. To provide some guidance as
to acceptable values for this parameter, we examined the
effects that a wider range of values for the percentage of
variation explained have on SNPs in LE while keeping
window size, relative-redundancy threshold, and sam-
ple size constant. As mentioned above, the variation-ex-
plained percentages for SPD and DIV cannot be com-
pared to each other directly. However, we can find values
for the parameter for each method that result in roughly
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similar behavior in the simulated data set. This allows
us to calibrate the behavior of the methods under the
null hypothesis of high importance of all markers and
is analogous to setting a common rejection region for
power comparisons of statistical tests. The SPD proce-
dure, as described in the “Methods” section, calculates
an measure that essentially prevents dropping SNPsLr

under LE, thus making it impossible to find the corre-
sponding DIV variation-explained percentages. We sim-
ulated data as described above, applied SPD (without

index) or DIV with a range of the variation-explainedLr

percentages, and computed the average percentage of
SNPs dropped. The sample sizes considered were 50 and
100. The rest of the parameters were chosen on the basis
of the results from the first part of simulation study I.

Simulation Study II: What Sample Size Is Required
in Order to Ensure Consistent Results across a Sample?

Ideally, we would like to obtain information about the
most informative markers representing the population of
interest with as few samples as possible, to keep genotyp-
ing costs low. Therefore, the consistency of our procedures
is investigated as a function of the sample size required
for marker selection. First, we simulate a large diploid
data set, later referred to as “the population,” containing
a chromosomal region with 50 SNPs and 20,000 indi-
viduals by using a forward simulation model that assumes
constant population size, nonoverlapping generations,
random mating, and no other disturbing forces except
recombination. Initial LD in the data is created by mixing
two populations with discrepant allele frequencies and no
control of the frequency range. The number of genera-
tions, the recombination rate, and the initial LD determine
the degree of LD in the final generation. To ensure that
our simulated data is realistic, we study the LD patterns
in several regions for which we have experimental data,
select high- and low-LD regions (with criteria defined
later, in the “Results” section), and adjust the parameters
in our simulation program to mimic these patterns in our
simulated data sets. Then, we sample a certain number
of individuals without replacement from the population,
and we apply either SPD or DIV to each sample. For both
methods, we fix the relative-redundancy threshold at 75%
and the sliding window size at 5, and we test sample sizes
of 10, 50, 100, and 200 individuals by using the variation-
explained percentages 85% and 90% for SPD and 92%
and 96% for DIV. We also apply repeated runs until the
procedure meets the convergence criterion. For each pa-
rameter combination, we record, in a vector ,v , … ,v1 50

the percentage of times that each SNP, , is1,2, … ,50
dropped in 100 nonoverlapping samples from the pop-
ulation. Note that values close to 0 or 1 are preferred,vi

since, respectively, they indicate that the SNP gets dropped
or kept each time in the simulations. The consistency for

each marker is evaluated using the mean square error
(MSE) of its dropping:

1001 2( ) ( )MSE p y � v p v 1 � v ,�i ik i i i100 kp1

where is an indicator variable, indicating whether theyik

ith marker gets dropped in the kth sample, and is thevi

drop percentage for the ith marker over 100 simulations.
Then, the overall consistency, the average MSE of the
drop percentage for all markers, is calculated as

501
MSE p v (1 � v ) .� i i50 ip1

We also provide the same data in both haplotype-phase–
known and haplotype-phase–unknown formats, to study
the effect that haplotype information has on our results.

Evaluation Criteria

We propose to evaluate the information retained about
a region by using two metrics that summarize haplotype
information: the number of frequent haplotypes and their
haplotype frequencies. Unfortunately, haplotype phase is
unobservable in most cases. We use the EM algorithm
with a sliding window to infer the haplotype frequencies.
Our procedure is as follows: apply a sliding window
with window size equal to 5, and estimate the haplotypes
by using the EM algorithm in each window. We chose
a window size of 5 because the calculation of EM fre-
quencies for five SNPs is computationally feasible and
sample sizes of 50 and 100 individuals provide enough
genotype information to get reasonable estimates. Some
unique situations may require other window sizes. Com-
pute two measures to evaluate the information: count
the number of the frequent haplotypes, defined as the
haplotypes with frequencies 15%, and calculate the het-
erozygosity as for these haplotypes. Then, ei-21 �� pi

ther SPD or DIV is applied to select “informative” SNPs.
If the selected SNPs can represent most of the infor-
mation in each window, then we expect to observe nearly
the same number of frequent haplotypes and the same
frequencies when we only use the selected SNPs to infer
these. Therefore, we use only the selected SNPs to es-
timate the haplotype frequencies within the previously
defined windows, we compute the two above measures
again, and we compare the measures before and after
selection. We define an acceptable difference for haplo-
type heterozygosity as 190% of the windows having a
heterozygosity difference �0.1. When repeated runs are
used, we evaluate the final selected marker set against
the initial full data set (for details, see the “Discussion”
section). We judge the procedure performance by the
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Table 1

Percentage of SNPs Dropped in LE—Using SPD, with Variation
Explained 85% and Haplotype Phase Unknown

SLIDING

WINDOW

SIZE

SNPS DROPPED WHEN

(%)

Sample Size Is 10 and Sample Size Is 50 and

RR p 50% RR p 70% RR p 90% RR p 50% RR p 70% RR p 90%

2 0 0 0 0 0 0
5 7 2 1 0 0 0
10 45 21 6 0 0 0
15 70 41 12 0 0 0
30 91 74 28 36 15 5

NOTE.—Results averaged over 100 simulations. RR p relative redundancy.

Table 2

Percentage of SNPs Dropped in LE—Using DIV, with Variation Explained 92% and Haplotype Phase Unknown

SLIDING

WINDOW

SIZE

SNPS DROPPED WHEN

(%)

Sample Size Is 10 and Sample Size Is 50 and Sample Size Is 100 and Sample Size Is 200 and

RR p 50% RR p 70% RR p 90% RR p 50% RR p 70% RR p 90% RR p 50% RR p 70% RR p 90% RR p 50% RR p 70% RR p 90%

2 3 !1 !1 !1 0 0 0 0 0 0 0 0
3 6 2 2 !1 0 0 !1 0 0 0 0 0
5 24 14 9 10 6 4 7 5 3 5 4 2
7 39 28 15 21 16 8 15 11 6 13 10 6

NOTE.—Results averaged over 100 simulations. RR p relative redundancy.

differences along the chromosomal region, as well as by
their overall distributions.

Data Sets

Using linkage analysis, we identified a 12-cM region on
chromosome 12 centered at D12S853 as likely to contain
a susceptibility gene for type 2 diabetes (Ehm et al. 2000).
Six hundred forty-nine SNPs distributed across this region
were genotyped in 138 unrelated white individuals. The
SNPs have been placed on a 12-Mb composite map by
using a combination of STS content mapping and se-
quence analysis. Of these 649 SNPs, 604 have MAF 15%.

To illustrate the impact that marker selection has on
an association study, we used data from the study by
Hosking et al. (2002), in which 32 markers surround-
ing the CYP2D6 gene on chromosome 22 were typed
in 1,018 white individuals. Twenty-seven SNPs had
MAF 15%. All SNPs were mapped to an 879-kb contig
flanking the CYP2D6 locus. Hosking et al. reported
significant associations between SNPs and the poor-
drug-metabolizing phenotype. We first reproduced the
results from the study by Hosking et al. by using the
same association tests; we then applied SPD and DIV
to select markers by using 100 randomly selected con-
trols. Using only the markers selected by SPD and all
1,018 individuals, we conducted Fisher’s exact test
(used by Hosking et al.) for single-marker genotypic
tests, used only selected SNPs to estimate haplotype fre-
quencies within the previously defined windows, and

applied the regression-based haplotype tests (used by
Hosking et al.) with the estimated haplotype frequen-
cies. We plotted the test P values versus the marker
positions of the full data set and the selected set, and
we compare their patterns.

Results

Simulation Study I

Table 1 shows the percentage of SNPs dropped when
markers are in LE as determined by using SPD, with
the percentage of variation explained set to 85% when
the haplotype phase is unknown, for sample sizes of
10 and 50. No markers were dropped for sample sizes
of 100 and 200, and, therefore, these percentages are
not shown. The pattern of markers dropped was similar
for a variation-explained parameter of 90%, except
that fewer markers are dropped (data not shown). The
results show that SPD will not drop SNPs in LE under
most parameter combinations, unless the sample size
is small relative to the window size, when some inde-
pendencies of SNPs will not be represented in the sam-
ple. The small percentages of SNPs dropped are prob-
ably the result of using the measure to determine ifLr

there is redundant information in the sample and drop-
ping SNPs only if redundancy appears to exist. In con-
clusion, for sample sizes of 50 individuals or more, SPD
retains important SNPs for window sizes �15.

Table 2 shows results for DIV when the percentage of
variation explained is 92%. The results are similar when
the percentage of variation explained is 96%, except that
fewer markers are dropped. Compared with SPD, DIV
drops more SNPs in LE. A similar pattern is observed, in
which more SNPs are dropped when window size is large
and sample size is relatively small. The percentage of SNPs
dropped is relatively stable when the sample size is 150
and the relative-redundancy threshold is 170%. The re-
sults guide us in choosing a sliding window size: it should
be large enough to include a substantial amount of varia-
tion but small enough that large sample sizes are not re-
quired in order to capture the important variation. When
the window size is 5 and the relative-redundancy thresh-
old is 170%, the percentage of SNP dropped is close to
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Table 3

Percentage of SNPs Dropped in LE—Using
Different Variation-Explained Values

VARIATION

EXPLAINED

(%)

SNPS DROPPED WHEN

(%)

Sample Size
Is 50, for

Sample Size
Is 100, for

DIV SPD DIV SPD

65 ND 12.6 ND 11.8
70 ND 8.9 ND 4.2
75 ND 3.9 ND 3.4
80 19.7 3.4 17.0 3.4
85 14.7 3.2 13.3 1.7
90 10.0 .1 7.9 0
92 6.5 ND 4.8 ND
94 3.4 ND 1.7 ND
95 ND 0 ND 0
96 1.0 ND .3 ND
98 0 ND 0 ND

NOTE.— Results averaged over 100 simulations.
ND p not done.

5%, even with a small sample size (e.g., 50). On the basis
of these simulations, we selected a sliding window size of
5 and a relative-redundancy threshold of 75% for many
of our further analyses. To make SPD and DIV easier to
compare, we used the same values for these two param-
eters for SPD as well.

We also explored the behavior of the two methods
when haplotype phase is known. The percentages of
SNPs dropped are smaller when the haplotype phase
is known, because inferring this information by use of
a mathematical algorithm such as EM results in an in-
formation loss (data not shown). Nevertheless, the per-
centages show a similar pattern, in which, to control the
percentages of SNPs dropped, relatively small window
sizes are needed when the sample size is small, although
it may be possible to apply the algorithms by using a
smaller sample size when the phase is known.

Table 3 shows the percentages of SNPs dropped for
SNPs in LE, for a range of variation-explained percent-
ages, as determined by using either SPD or DIV. The var-
iation-explained percentages should be �94% for DIV
and 75% for SPD when the sample size is 50 and 92%
for DIV and 70% for SPD when sample size is 100, if
the false-positive rate for the markers in LE is controlled
to be !5%. We propose these values as the “safe” starting
point, to avoid dropping important markers when the
degree of LD in the data is either hard to measure or
complex. The variation-explained percentage could be
determined by testing a large range of values for the ex-
perimental data and a value chosen when the haplotype
information before and after selection is similar. However,
the results may become too complicated to interpret when
the real data consist of regions with differing degrees of
LD and the repeated-runs setup is applied. Therefore, us-
ing a variation-explained parameter that we know is sim-
pler, because it does not result in dropping too many SNPs
under LE.

Simulation Study II

To study the sample sizes needed to obtain consistent
selection results, we simulated data sets containing dif-
fering degrees of LD with patterns similar to our experi-
mental data. We divided our data on chromosome 12
into six regions (each containing ∼110 markers) and
treated chromosome 22 as a single region, to study the
LD patterns of these seven regions. D′ was calculated
for each marker pair within each region and was av-
eraged according to the number of intervening markers.
The averaged D′ was plotted versus the number of in-
tervening markers. As expected, for all regions, the av-
erage D′ decreases as the number of intervening mark-
ers increases (graphs not shown). Two regions, one
with the fastest and one with the slowest decrease in
LD, with increasing distance between markers were se-

lected as high- and low-LD regions, respectively. The
average D′ drops under 0.5 when the markers consid-
ered are separated by 30 intervening markers in the
high-LD region; for the low-LD region, the average D′

drops under 0.5 after a separation of five markers. Two
data sets, each with 50 SNPs, were generated to pro-
duce similar LD patterns by adjusting the number of
generations evolved and the recombination rate used
in the simulation.

Figure 1 shows each SNP’s average drop percentage
across 100 simulations when SPD is applied with varia-
tion-explained percentage 90% and window size 5, for
the high-LD data. Figure 2 shows the results when DIV
is used with variation-explained percentage 92% and
window size 5, for the high-LD data. Note that SPD
and DIV may select different markers across different
samples from the population, because these markers
are highly correlated and provide somewhat equivalent
information, and which marker(s) provides more in-
formation in each sample is affected by the statistical-
sampling variation. Therefore, for the two methods, we
expect either patterns that are relatively stable but not
identical or patterns with 0% or 100% drop for each
marker. Both figures 1 and 2 suggest that sample sizes
�50 are needed to achieve consistent results. When the
sample size is increased from 50 to 100 or from 100 to
200, the consistency improves a little. With higher vari-
ation-explained values or a low degree of LD in the da-
ta, a similar pattern is obtained with even more consis-
tent results (data not shown). Knowledge of haplotype-
phase information does improve the consistency, but its
effect is small and can be compensated for with a slight
increase of the variation-explained percentage or the sam-



Figure 1 Average drop percentage of 50 SNPs across 100 simulations on the high-LD data when haplotype phase is unknown. SPD is
used with variation explained 90% and window size 5. From top to bottom, the graphs are for sample sizes equal to 10, 50, 100, and 200;
for each respective graph, the average number of SNPs dropped is 25.5, 19.7, 20.1, and 20.2, and the average MSE of dropping is 0.17, 0.11,
0.09, and 0.08.



Figure 2 Average drop percentage of 50 SNPs across 100 simulations on the high-LD data when haplotype phase is unknown. DIV is
used with variation explained 92% and window size 5. From top to bottom, the graphs are for sample sizes equal to 10, 50, 100, and 200;
for each respective graph, the average number of SNPs dropped is 26.2, 20.4, 20.0, and 19.4, and the average MSE of dropping is 0.16, 0.09,
0.07, and 0.06.
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ple size. For both SPD and DIV, almost the same number
of markers and the same markers are dropped when the
same parameters are used and the sample size is large
enough (�50), regardless of whether the haplotype in-
formation is observable. On the basis of the results of
simulation study II, we recommend a sample size of
50–100 individuals, depending on the expected amount
of missing data.

Experimental Data Results

In applying the procedure to the experimental data, we
also used a sliding window size of 5 and retained a SNP
when its relative redundancy was !75%. We used repeat-
ed runs and utilized the convergence criterion mentioned
above (see the “Simulation Studies” section). On the basis
of the results in table 3, we chose starting variation-ex-
plained values of 70% for SPD and 92% for DIV, re-
spectively, since we used sample sizes close to 100 indi-
viduals for all experimental data. To evaluate the outcome
of marker selection, we used a sliding window size of 5
when calculating the number of frequent haplotypes and
the haplotype heterozygosity. We included all the available
SNPs even when their MAFs were !5%, to achieve a
relatively comprehensive picture of LD before selecting
markers, regardless of the SNP allele frequencies. We ad-
justed the variation explained for each method until
190% of the windows had haplotype heterozygosity dif-
ferences !0.1. We chose the haplotype heterozygosity be-
cause we found the number of frequent haplotypes to be
unreliable in certain situations; for example, the number
of frequent haplotypes can change owing to a small
change of one haplotype frequency (e.g., from 4% to
5.5%). These haplotype-frequency changes contribute lit-
tle to the difference in heterozygosity. For all experimental
data sets, we presented results as long as one procedure
(SPD or DIV) achieved this goal; for the other procedure,
we adjusted the variation-explained percentage so that it
retained a similar number of markers, to make our com-
parisons fair.

For the chromosome 12 data, the above procedure re-
sulted in variation-explained values of 90% for SPD and
96% for DIV. Using these settings, from a total of 649
markers, we selected 415 (63.9%) by SPD and 412
(63.5%) by DIV. Histograms of the differences in the
haplotype heterozygosity and the number of frequent hap-
lotypes for each window are shown in figure 3. The pro-
portions of windows with differences !0.1 in the hetero-
zygosity are 85.2% for the SPD method and 92.2% for
the DIV method. The proportions of windows with dif-
ferences �1 in the number of frequent haplotypes are
93.4% for SPD and 95.3% for DIV. For the chromosome
22 region, we have a much larger sample size than that
required for marker selection. We randomly selected 100
controls and applied our procedure as if this were the

sample size collected for marker-selection purposes. Var-
iation-explained percentages of 75% and 92% were used
for SPD and DIV, respectively, and, of the 32 markers
reported by Hosking et al. (2002), 20 (62.5%) were se-
lected in both instances. The proportions of windows with
differences !0.1 in heterozygosity are 88.9% and 92.9%
for SPD and DIV, respectively. We used relatively low
variation-explained percentages for each method, com-
pared with those for the chromosome 12 data, and we
achieved smaller differences before and after selection.
One explanation for this finding may be the homogeneous
nature of the LD pattern in this data set. The procedures
were applied to several other data sets (data not shown),
in different samples with different LD patterns. The results
in all the data sets tested showed that the majority of
haplotype information could be maintained while achiev-
ing substantial reduction in the number of SNPs that need
to be analyzed.

We analyzed the markers selected by SPD from the
chromosome 22 data for association with the CYP2D6
poor-metabolizer phenotype. Note that, because almost
one-half of the markers show strong association with
the phenotype, it does not make sense to evaluate the
procedure on the basis of whether the selected marker
set includes the significant signals. Therefore, we chose
to compare the test P values’ patterns by using the full
data and the selected data. Note that 20 of 27 markers
were selected and that the markers with the most sig-
nificant genotypic tests were among those selected (data
not shown). Figure 4 contains the haplotype test results
for the full marker set, with a sliding window size of 5,
and for the selected marker set, within the context of
the windows defined by the full data; the two curves
almost overlap, which is not surprising, since the select-
ed markers preserved the information content of the full
data well. Therefore, marker selection had a negligible
impact on the results of this association study. Similar
results were duplicated in other association studies (data
not shown).

Discussion

There are several fundamental differences between the
two methods, spD and div. The spD method relies on
two-locus LD (i.e., pairwise correlation) and single-
marker characteristics, whereas the div method relies
on haplotype frequencies, which involve not only two-
locus LD coefficients and allele frequencies but also LD
coefficients pertaining to alleles at three or more mark-
ers (Bennett 1954). Haplotypes will provide more in-
formation than do pairwise LD measures if the LD
measures involving three or more markers make a sig-
nificant contribution; otherwise, haplotype frequencies
are just linear combinations or summaries of pairwise
LD and allele frequencies. M. G. Ehm, D. M. Nielsen,
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Figure 3 Overall evaluation for the procedure—with SPD using variation explained 90% (top) and DIV using variation explained 96%
(bottom), on the chromosome 12 region with 649 SNPs. The histograms show the differences in the number of frequent haplotypes (left) and
the differences in heterozygosity (right), before and after marker selection. For both methods, sliding window size 5 was used, and the procedure
converged on the third run.

Z. Meng, M. Karnoub, C.-F. Xu, D. Zaykin, E. H. Lai,
M. J. Wagner, D. K. Burns, and B. S. Weir (unpublished
data) summarized the decay and extent of two- and
three-locus LD in several genomic regions, including
the chromosome 12 and chromosome 22 regions de-
scribed here. They found that LD based on alleles at
three loci decays more quickly than two-locus LD. The
extent of three-locus LD is relatively small across the
chromosome 12 locus, except for the central region,
near 5,000 or 6,000 kb, where there is a large amount
of three-locus LD. Therefore, it is reasonable to inves-
tigate marker-selection procedures based on two-locus
LD and single-marker characteristics. Our observation
that there is no major difference in the overall per-
formance of the procedures based on spD and div sup-
ports the above hypothesis. A minor observation is that
spD tends to drop markers with closer or higher MAFs,
because it relies on the correlation r, which achieves

higher values when marker MAFs are close or relatively
high. In contrast, div tends to drop markers with dis-
parate allele frequencies, because it is based on the het-
erozygosity and markers with less-frequent alleles con-
tribute less to this measure. Although we did not see
significant differences in the performance of the meth-
ods when the results were evaluated using our evalua-
tion criteria, this difference may explain why the meth-
ods do select different markers. With both methods, we
preselect markers according to their allele frequencies
and retain SNPs only when their MAFs are 15%. This
may make the two procedures more comparable, since
SNPs with very disparate allele frequencies will not be
retained. Furthermore, the typing of markers with fre-
quencies !5% may be less efficient in the association-
study design. Finally, spD is less computationally inten-
sive and can be applied to analyze a larger number of
SNPs (e.g., candidate genes typed for several dozen mark-
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Figure 4 Association between CYP2D6 poor-metabolizer phenotype and haplotypes. Haplotypes were derived by the EM algorithm,
from windows of consecutive SNPs. Symbols indicate the first markers in a window: unblackened diamonds (�) represent haplotype test results
of 27 markers with window size 5; blackened triangles (�) represent haplotype test results of 20 selected markers with markers placed in
previously defined windows.

ers) without using sliding windows, since it is based on
a summary of pairwise LD and does not require haplo-
type-phase information. The div approach is constrained
by its computational limitations, because it relies on the
haplotype information that has to be estimated if un-
known. The required computational time to estimate hap-
lotype frequencies in unrelated individuals by using a nu-
merical algorithm such as EM increases dramatically as
the number of markers increases. Furthermore, as de-
scribed in the “Methods” section, the optimal htSNP set
is found by an exhaustive search of all the possibilities.
Therefore, div, by itself, is quite time-consuming when
more than seven SNPs are considered. It may be possible
to reduce the computational burden of div by substituting
its exhaustive search step with a preapplication of spD.
In brief, the order of markers’ contributions to the total
variation can be obtained by applying the spD method.
SNPs in the ordered marker set can be included in the
htSNP set of the div method, gradually, until a criterion
is met (details still under study).

The LD matrix that spD is based on is the correlation
matrix of marker genotypes, which is semipositive when
there is complete data. However, when there is missing

genotype data, the correlation (or covariance) matrix
may occasionally be negative and may present a problem
in the spD analysis. This problem is more likely to occur
as the proportion of missing data or the number of mark-
ers for a given sample size increases. Although the prob-
lem did not occur in the present study, caution is needed.
The normalized measure of LD (D′) is not recommended
for use with the spD method, since it may exaggerate the
problem. Moreover, the resulting matrix is neither the
correlation nor the covariance; therefore, the eigenvalue-
eigenvector pairs lack clear statistical interpretation.

Zhang et al. (2002) proposed a dynamic program-
ming method for the performance of haplotype-block
partitioning, to minimize the SNPs that are needed to
represent common haplotypes. This method can utilize
different measures of the block quality, including the
ratio of the number of SNPs in the block to the mini-
mum number of SNPs required in order to define hap-
lotypes or the proportion of div explained by a subset
of the SNPs in a block (i.e., the htSNP method [Clayton
2001]). Similarly, another possible measure of the block
quality could be the number of SNPs that are needed to
achieve a previously specified measure of the variation
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explained using the spD method. Whereas Zhang et al.
defined blocks with a minimum number of SNPs by using
any of a number of measures of block quality, our goal
is to select a subset of SNPs, preserving local haplotype
frequencies within a relatively short genetic distance and
thus maintaining similar measures of haplotype infor-
mation before and after marker selection. This leads us
to the sliding window approach, which does not rely on
the block definitions. Furthermore, our procedure is de-
signed to be applicable to data when haplotype-phase
information is not available.

There are several approaches that could be consid-
ered in defining the convergence for repeated runs. One
choice is to run the procedure until no more markers
are dropped. We found that this worked well for a
homogeneous LD region, but, when a region exhibits
a mixed amount of LD, too many repeated runs can
lead to the dropping of informative markers and in-
formation loss. One possible reason is that markers
in LE get dropped if the procedure is applied to data
with less and less correlation. Therefore, for a com-
plex chromosomal region, we suggested the 5% cut-
off, as described in the “Methods” section. One might
consider whether it makes sense to use repeated runs at
all. We found that using a higher variation-explained
percentage in combination with repeated runs was pref-
erable (i.e., had less information loss) to one with a
lower variation-explained value with no repeated runs.

In evaluating our procedures, we used the hetero-
zygosity and the number of the frequent haplotypes
to measure the haplotype information content. We felt
that these measures captured aspects of haplotypes im-
portant in association studies. Any other suitable mea-
sures, such as matching haplotype frequencies before
and after selection, could be used. Furthermore, the eval-
uation procedure can vary according to the different
requirements of the studies. We used a fixed variation-
explained percentage, ran the procedures repeatedly un-
til they converged, and evaluated the information con-
tent of the selected marker set against that of its initial
full data within the initially defined sliding windows.
One advantage of this approach is that it provides an
overall evaluation for all repeated runs. However, it may
be too conservative, since markers are selected on the
basis of their LD structure in the sliding windows and
some of the windows may lose their initial meanings
after the repeated marker reductions. This can result in
some large differences in the haplotype information
measures as a result of the selection process, but these
differences do not necessarily indicate serious informa-
tion loss. An alternative approach would be to evalu-
ate the information content of the selected marker set
against that of its immediate input data for each re-
peated run. There are two advantages for the latter ap-
proach: First, all selected markers are evaluated in the

windows they are selected. Second, the variation-ex-
plained value could be adjusted to control the infor-
mation loss for each repeated run. However, it is not
clear how we summarize the overall performance of
such a procedure.

In the present article, the selection procedures are
applied to the markers discovered and typed in popu-
lation controls—samples chosen regardless of pheno-
type. We have found it useful to ensure that SNPs are
polymorphic in the ethnic group of interest before typ-
ing them on expensive disease samples. Currently, we
are typing a large number of SNPs in a panel of 100
population samples and using these data in the marker
selection. Since we are studying several diseases, using
a population sample allows us to use the marker select-
ed in further studies, regardless of the disease. However,
this approach does assume the common-disease, com-
mon-allele hypothesis: If a rare allele at a marker is
responsible for the disease, then it is unlikely to be se-
lected in such an approach. Another choice would be
to apply marker selection to markers discovered in case-
control samples and typed in cases only. This way, the
disease alleles, although rare in the population, will have
increased frequency in the sample, and the selection fa-
voring polymorphic markers would have good justifi-
cation. When case-control samples are available, pro-
cedures similar to the ones described here can be useful
in selecting the most discriminative subsets of markers
among those that show frequency differences between
cases and controls. Analogously, the marker-selection
procedure might need to be conducted separately, using
different samples from different populations, if we wish
to study different populations that may have somewhat
different haplotype structures.

We do realize that procedures such as these have
consequences. As with any statistical procedure, mark-
er selection is always a gamble, since markers are se-
lected mainly on the basis of LD structure, regardless
of any phenotypes. Therefore, the impact that marker
selection has on the results of an association study, in
general, is not known. Although we have showed one
example in which marker selection had a negligible
effect on the association results, the impact can vary
greatly from case to case. For instance, the required
percentage of information retained in the association
study might depend on effects of disease-susceptibility
genes, which are hard to assess before actually con-
ducting the association test. Furthermore, it is possible
that a causal marker is not selected because it is high-
ly correlated with nearby markers. Fortunately, it ap-
pears that analyzing the data by using haplotype anal-
ysis would reduce the impact of such a selection. In
summary, marker selection should be viewed as pro-
viding a way to prioritize markers for a first genotyp-
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ing screen, and more markers can always be typed in
the regions of interest later.
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Appendix A

Obtaining the Matrix of Pairwise LD
for Diallelic Markers

Calculation of matrices of pairwise LD is most straight-
forward for markers with two alleles and can be handled
with a simple command by using standard statistical soft-
ware—for example, by invoking the cor() function in R/
Splus. The following method requires that marker ge-
notypes are recoded as follows:

�1 if genotype is 11
New value p 0 if genotype is 12 .{1 if genotype is 22

A pair of SNPs will be represented by two vectors x and
y with entries as just indicated. It can be easily shown
that the usual sample covariance

1 1
C (x,y) p x y � x y� � �AB i i i i2n n

is twice the composite LD, , reported by Weir (1996).DAB

To see this, the terms of the covariance can be written
in terms of two-locus counts, as

x y p n � n � n � n� i i AABB AAbb aaBB aabb

and

x y p (n � n )(n � n ) .� �i i aa AA bb BB

Then, follows from the relationC (x,y) p 2DAB AB

1
D p (D � D � D � D )AB AB ab Ab aB4

1
p (n � n � n � n )AABB AAbb aaBB aabb2n

1
� (n � n )(n � n ) .aa AA bb BB22n

These composite coefficients are unbiased estimates of
the population LD under Hardy-Weinberg equilibrium
(HWE). When HWE does not hold, they include an addi-
tional component that measures covariance between al-
leles between different haplotypes in an individual. The
diagonal elements of the variance-covariance ma-C (x,x)A

trix , are 4n times variances of allele frequencies,C(x,x)
, where is the allele fre-Var (p ) p [p (1 � p ) � D ]/2n pA A A A A

quency of allele A, is the deviation fromD p p � pA AA A

HWE, and is the frequency of genotype AA. In termspAA

of recoded values, the allele frequencies are

� xi1
p̃ p �A 2 2n

and

� yi1
p̃ p � .B 2 2n

Finally, the correlation of Weir (1996), defined as

D̂ABr p ,AB ˆ ˆ˜ ˜ ˜ ˜�[p (1 � p ) � D ][p (1 � p ) � D ]A A A B B B

can be computed from recoded values, as

C (x,y)ABr p ,AB �C (x,x)C (y,y)A B

or by an R/Splus function call, cor().

Appendix B

Determining Effective/Redundant Numbers
of Markers, andL Le r

Let L be the actual number of markers and be{l }i
a set of eigenvalues associated with the matrix of
pairwise LD coefficients. From Cauchy-Schwarz in-
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equality and noting that are nonnegative, we{l }i
have . This bound corresponds to the2 2� l � (� l ) /Li i

no-LD situation, for which ; in this case,l p l ,Gi,ji j

2( )� l� l ii
2l p l p .� �i i L L

By expanding , we also see that . This2 2 2(� l ) � l � (� l )i i i

bound corresponds to the maximum possible LD with a
single nonzero eigenvalue; in this case, . Put2 2� l p (� l )i i

together,

2( ) 2� li
2 ( )� l � l .� �i iL

Then, we have

2� lI

0 � L � 1 � L � 1 ,2( )� li

so that the number of redundant markers can be de-
fined as

2� li

L p L � 1r 2( )� li

and the effective number of markers, , reduced1 � L � Le

owing to LD, is

2� li

L p 1 � L 1 � .e 2[ ]( )� li
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